
POST: A Secure, Resilient, Cooperative Messaging System

Alan Mislove1 Ansley Post1 Charles Reis1 Paul Willmann1 Peter Druschel1

Dan S. Wallach1 Xavier Bonnaire2 Pierre Sens2 Jean-Michel Busca2

Luciana Arantes-Bezerra2

1Rice University, Houston, TX, USA
2LIP6, Universit́e Paris VI, Paris, France

Abstract

POST is a cooperative, decentralized messaging system that
supports traditional services like electronic mail (email),
news, instant messaging, as well as collaborative applica-
tions such as shared calendars and whiteboards. Unlike
existing implementations of such services, POST is highly
resilient, secure, scalable and does not rely on dedicated
servers. POST is built upon a peer-to-peer (p2p) overlay
network, consisting of participants’ desktop computers. We
sketch POST’s basic messaging infrastructure, which pro-
vides shared, secure, single-copy message storage, user-
specific metadata, and notification. As an example applica-
tion, we sketch how POST can be used to construct a cooper-
ative, secure email service called ePOST.

1 Introduction

Messaging systems like traditional email and news, as well
as instant messaging, shared calendars and bulletin boards,
are among the most successful and widely used distributed
applications. Currently, these services are implemented in
the client-server model. Messages are stored on and routed
through dedicated servers, each hosting a set of user ac-
counts. This partial centralization requires substantial infras-
tructure costs when the system is scaled to large numbers
of users. The client-server model also limits reliability, as
servers present a single point of failure or attack on the sys-
tem for the users they support. Additionally, maintenance
and administration costs can become significant for large or-
ganizations.

POST is a cooperative infrastructure that leverages the re-
sources of users’ desktop workstations to provide messag-
ing services. POST provides three fundamental services to
applications: (1) persistent single-copy message storage, (2)
per-user metadata, and (3) notification. A wide range of mes-
saging applications can be constructed on top of POST using
these services.

POST itself is built upon a structured p2p overlay network,
providing it with scalability, resilience and self-organization.
Users contribute resources to the POST system (CPU, disk
space, network bandwidth), and in return, they are able to uti-

lize its services. POST assumes that participating nodes can
suffer byzantine failures. Stronger failure assumptions may
be unrealistic, even in scenarios where participating hosts be-
long to a single organization, because a single compromised
node may be able to disrupt critical messaging services or
disclose confidential messages.

In this paper, we sketch the design of the POST infrastruc-
ture, and then describe how a cooperative, secure email sys-
tem can be built on top of POST. Unlike conventional SMTP-
based email services, ourePOSTsystem provides secure
email services by default and requires no dedicated servers.
Furthermore, due to its strong sender authentication, ePOST
makes efficient spam defense easier. We chose email as the
initial application for POST because it is well understood,
and because its high availability, reliablity and security de-
mands make it a challenging driver for POST and p2p sys-
tems in general.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background information on Pastry, PAST, and
Scribe, which are used as building blocks for POST. Section 3
sketches the design of the POST infrastructure. In Section 4,
we sketch the design of a cooperative email system as an ex-
ample POST application. Section 5 discusses integrating
POST with existing messaging systems. Section 6 outlines
related work, Section 7 reports the status of the project, and
Section 8 concludes.

2 Background

In this section, we briefly describe Pastry, PAST and Scribe,
which are used as building blocks in POST.

Pastry [12] is a structured p2p overlay network designed
to be self-organizing, highly scalable, and fault tolerant. In
Pastry, every node and every object is assigned a unique iden-
tifier chosen from a large id space, referred to as anodeId
andkey, respectively. Given a message and a key, Pastry can
efficiently route the message to the node whose nodeId is nu-
merically closest to the key.

PAST [13] is a storage system built on top of Pastry and
can be viewed as a distributed hash table. Each stored item in
PAST is given a 160 bit key (hereafter referred to as thehan-
dle), and replicas of an object are stored at thek nodes whose

1



nodeIds are the numerically closest to the object’s handle.
PAST also maintains the invariant that the object is replicated
onk nodes, regardless of node addition or failure.

Since nodeId assignment is random, thesek nodes are un-
likely to suffer correlated failures. PAST relies on Pastry’s
secure routing [2] to ensure thatk replicas are stored on the
correct nodes, despite the presence of malicious nodes who
may attempt to prevent this. Throughout this paper, we as-
sume that at mostk−1 nodes are faulty in any replica set.

A variant of PAST is used in POST to store three types
of data: content-hash blocks, public-key blocks, andcertifi-
cate blocks. Content-hash blocks are stored using the cryp-
tographic hash of the block’s contents as the handle. Public-
key blocks contain monotonically increasing timestamps, are
signed with a private key, and are stored using the crypto-
graphic hash of the corresponding public key as the handle.
Certificate blocks are signed by a trusted third party and bind
a public key to a name (e.g., an email address). The block is
stored using the cryptographic hash of the name as the han-
dle.

Content-hash blocks can be authenticated by obtaining a
single replica and verifying that its contents match the handle.
Unlike content-hash blocks, public key blocks are mutable.
To prevent rollback attacks by malicious storage nodes, it is
necessary to obtaink replicas and choose the authentic block
with the most recent timestamp. Certificate blocks require a
signature verification using the well-known public key of a
trusted third party.

Scribe [3] is a scalable multicast system built on top of
Pastry. Each Scribe group has a 160 bitgroupIdwhich serves
as the address of the group. The nodes subscribed to each
group form a multicast tree, consisting of the union of Pas-
try routes from all group members to the node with nodeId
numerically closest to the groupId.

3 POST Architecture

As a generic messaging system, POST provides three funda-
mental services: a shared, secure single-copy message store,
per-user metadata, and notification. These services can be
combined to implement a variety of collaborative applica-
tions, like email, news, instant messaging, shared calendars
and whiteboards.

A typical pattern is that users create messages, which are
inserted in encrypted form into the secure store. To send the
message to another user or group, the notification service is
used to provide the recipient(s) with the necessary informa-
tion to locate and decrypt the message. The recipients may
then modify their personal metadata to incorporate the mes-
sage into their view (e.g., into a private mail folder).

POST assumes the existence of a certificate authority. This
authority signs certificates binding a user’s unique name (e.g.,
her email address) to her public key. The same authority is-
sues the nodeId certificates required for secure routing in Pas-
try [2]. Furthermore, the authority may require that each user
also owns a nodeId bound to a live IP address, thus forcing
the user to contribute a node to the system. Users can ac-
cess the system from any node, but it is assumed that the user

trusts her local node, hereafter refered to as the trusted node,
with her private key.

Throughout the design of POST, we assume that objects
stored in PAST cannot be deleted. Thus, we assume that
the amount of available disk space in the system is always
increasing and greater than the total storage requirements,
which is reasonable to expect in a p2p environment where
each participant is required to contribute a portion of her
desktop’s local disk [10].

3.1 User Accounts

Each user in the POST system possesses an account, which
is associated with an identity certificate. The certificate is
stored as a certificate block in PAST, using the secure hash
of the user’s name as the handle. Also associated with each
account is a user identity block, which contains an XML de-
scription of the user, the contact address of the user’s cur-
rent trusted node, and any references to public metadata as-
sociated with the account. The identity block is stored as
a public-key block in PAST, and signed with the user’s pri-
vate key. Finally, each user account has an associated Scribe
group used for notification, with a groupId equal to the cryp-
tographic hash of the user’s public key.

3.2 Secure Message Storage

POST provides a shared, secure message storage facility.
Application-provided message data is encrypted using a tech-
nique known as convergent encryption [6]. Convergent en-
cryption allows a message to be disclosed to selected recipi-
ents, while ensuring that copies of a given cleartext message
inserted by different users map to the same ciphertext, thus
requiring only a single copy of the ciphertext to be stored.

When an application wishes to store messageX, POST first
computes the cryptographic hashH(X), uses this hash as a
key to encryptX using an efficient symmetric cipher, and then
stores the resulting ciphertext with the handle

H({X}H(X))

which is the secure hash of the ciphertext. To decrypt the
message, a user must know the hash of the cleartext.

3.3 Notification

The purpose of the notification is to alert a user to the avail-
ability of a message and to provide her with the appropriate
decryption key. In the common case, a notification requires
obtaining the contact address from the recipient’s identity
block (this may require a lookup of the recipient’s certificate
block, if the certificate is not already cached by the sender).
Then, a notification message is sent to the recipient’s con-
tact address, which contains the secure hash of the message’s
ciphertext and its decryption key, and is encrypted with the
recipient’s public key and signed by the sender.

In practice, notification can be more complicated if the
sender and the recipient are not on-line at the same time. To
handle this case, the sender may delegate the reponsibility

2



of delivering the notification message to a set ofk random
nodes.

When a userA wishes to send a notification message to a
userB whose trusted node is off-line,A first sends a notifica-
tion request message to thek nodes numerically closest to a
random Pastry keyC. This message is encrypted forB, and
separately containsA’s signature indicating the message is
valid. Thek nodes are then responsible for delivering the no-
tification message (contained within the notification request
message) toB. Each of these nodes stores the message and
then subscribes to the Scribe group rooted at the hash ofB’s
public key. Additionally, the nodes periodically check the re-
cipient’s identity block for an updated contact address, and
ping the address.

Whenever userB is on-line, his trusted node periodically
publishes a message to the Scribe group rooted at the hash of
his public key, notifying any subscribers of his presence and
current contact address. This presence message may contain
application-specific data about the state of the user. Upon
receipt of this message, subscribers deliver the notification
by sending it to the contact address. Since, by assumption,
at mostk−1 of these nodes can be faulty, the notification is
guaranteed to be delivered. POST relies on Scribe only for
timely delivery. If Scribe messages are lost due to failures,
the notification will eventually be delivered due to periodic
pings and checks of the recipient’s identity block.

3.4 Per-User Metadata

POST provides a facility that allows applications to main-
tain per-user metadata that refers to stored messages of inter-
est to the user. The facility provides single-writer logs that
can be used by applications to represent changes to applica-
tion metadata. For instance, an email application can use a
log of insert and delete records to keep track of the state of
a user’s mail folder. In general, logs can be used to track
the state of a chatroom, a newsgroup, a shared calendar, or
an arbitrary data structure. POST represents logs using self-
authenticating blocks in PAST.

The log head is stored as a public-key block in PAST and
contains the location of the most recent log record. Handles
for log heads may be stored in the user’s identity block, in
a log record, or in a message. Each log record is stored
in PAST as a content-hash block and contains application-
specific metadata and the handle of the next recent record in
the log. Applications optionally encrypt the contents of log
records depending on the intended set of readers.

In a straightforward implementation, the log head and each
log record are stored at a different set of PAST nodes. To
allow for more efficient log traversal, POST stores clusters
of M consecutive log records on the same PAST node, under
the handle of the least recent of theM records. To deal with
partially filled clusters, the log head contains an additional
handle, referring to the least recent record in a partially filled
cluster. This handle identifies the cluster in PAST.

Other optimization are possible to reduce the overhead of
log traversals, including caching of log records at clients and
the use of snapshots. POST applications may periodically in-
sert snapshots of their metadata into PAST making log traver-
sal only necessary up to the most recent snapshot. Similar

ideas were used in Ivy [9] in order to represent file metadata
in a p2p file system.

3.5 Discussion

POST provides single-writer logs as the only mechanism to
maintain mutable state in the system. Thus, it avoids the cost
and complexity of a general byzantine fault-tolerant repli-
cated state machine. We are confident that POST’s restricted
mechanism for mutable state is flexible and efficient enough
for email and instant messaging, especially given the snap-
shot and clustering optimizations that POST uses. We conjec-
ture that it is also sufficient for other applications like shared
calendars.

However, we believe that cooperative applications exist
that may require a more flexible mechanism for maintaining
mutable state. To support such applications, the authors at
LIP6 are currently investigating additional, byzantine fault-
tolerant mechanisms for maintaining multi-writer, mutable
state. These mechanisms target applications supporting a
large number of writers and allowing disconnected opera-
tions.

4 Example: Electronic Mail

In this section, we sketch the design of a serverless email sys-
tem, ePOST, on top of the POST infrastructure. The goal is to
leverage POST to build a secure, scalable and highly resilient
email system, while leveraging the resources of participating
desktop computers.

While a system like ePOST promises increased resilience,
greater scalability and lower cost, it remains an open question
whether these advantages will be sufficient to completely dis-
place the existing, server-based email infrastructure. Never-
theless, we chose to pursue ePOST for several reasons. First,
ePOST is designed so that it can be deployed incrementally,
thus allowing individual organizations to adopt it while still
relying on existing standards and infrastructure for commu-
nication across organizations.

Second, unlike most existing p2p applications, email is
mission-critical and demands high reliability, security, and
availability. Thus, it is a challenging driver for the develop-
ment of POST and, more generally, the underlying p2p in-
frastructure.

4.1 Overview

Each ePOST user is expected to run a daemon program on his
desktop computer that implements the Pastry, PAST, Scribe
and POST protocols, and contributes some CPU, network
bandwidth and disk storage to the system. The daemon acts
as a SMTP and IMAP server, thus allowing the user to uti-
lize conventional email client programs. The daemon is as-
sumed to be trusted by the user and holds the user’s private
key. No other participating nodes in the system are assumed
to be trusted by the user.

3



4.2 Message Storage

In ePOST, email messages received from an email client pro-
gram are parsed and the MIME components of the message
(message body and any attachments) are stored as separate
messages in POST. Thus, frequently circulated attachments
are stored in the system only once.

The message components are first inserted into POST by
the sender’s ePOST daemon; then, a notification message is
sent to the recipient. Sending a message or attachment to a
large number of recipients requires very little additional stor-
age overhead beyond sending to a single recipient. If mes-
sages are forwarded or sent by different users, the original
message data does not need to be stored again; the original
message reference is reused.

The convergent encryption used in POST is known to be
less secure when encrypting short messages and highly struc-
tured content (e.g., text), as it is vulnerable to known clear-
text attacks. To avoid a loss of confidentiality, small message
bodies are padded by ePOST with a number of random bits.
This measure defeats the single-copy storage, but this is not
a concern given the small size of the affected messages.

Due to the necessary data replication in PAST, the storage
overhead per message is higher in POST compared to a con-
ventional server-based email system. However, this effect is
partly offset by POST’s single-copy store, which eliminates
large amounts of duplication due to large, widely circulated
email attachments. Moreover, exploiting the typically under-
utilized disk space on desktop computers should more than
compensate for this overhead [1].

4.3 Delivery

The delivery of new email is accomplished using POST’s no-
tification service. A sender first constructs a notification mes-
sage containing basic header information, such as the names
of the sender and recipients, the subject, a timestamp, and a
reference to the body and attachments of the message. The
sender then requests the local POST service to deliver this no-
tification to each of the recipients. It is noteworthy to mention
that ePOST extends recipient control beyond current systems
by allowing the recipient to append the message to his mail-
box or to simply ignore the notification, perhaps based on a
spam filter.

4.4 Metadata

Each mail folder is represented by a POST log. Each log
entry represents a change to the state of the associated folder,
such as the addition or deletion of a message. Furthermore,
since the log can only be written by its owner and its content
can be encrypted, ePOST preserves the expected semantics
of current email systems.

Next, we describe a log record representing an insertion of
a email message into a user’s Inbox folder. Other types of log
records are analogous. An email insertion record contains the
content of the message’s MIME header, the message’s handle
and its decryption key, and a signature from the sender, all of
which are encrypted with the recipient’s public key.

Thus, the recipient can verify that the message was actu-
ally sent by the stated sender, and both parties have the con-
fidence that only the intended recipient will be able to read
the message. As an example, if userA sent a message to user
B with subjectSand message textX at timeT, the insertion
record inB’s Inbox will be

{A,B,S,T,H({X}H(X)),H(X),sigA}B

4.5 Discussion

By default, ePOST provides strong confidentiality, authenti-
cation and message integrity. Moreover, with very high prob-
ability, the system is able to tolerate up to a given fraction
of faulty or malicious nodes without loss of data or service.
It relies on Pastry’s secure routing facilities [2], data replica-
tion, and crytographic techniques to achieve robustness under
a wide range of attacks, including denial-of-service. More
analysis and experimentation will be necessary to determine
appropriate assumptions about the fraction of faulty nodes in
various environments, and appropriate levels of replication.
Results of a prior study on p2p filesystems in corporate envi-
ronments indicate that modest levels of replication can yield
very high availability [1].

In the simplest configuration, all participating POST nodes
form a single Pastry ring, and a message inserted into POST
is replicated on a set of random nodes throughout the sys-
tem. In practice, it would be desirable to instead replicate
a message inserted by a given user among the nodes within
the user’s organization. Thisscopedinsertion leads to better
network locality, and provides an effective defense against
denial-of-service attacks aimed at exhausting the system’s
storage. It also permits better node failure rate estimations
and fault assumptions within a given organization and may
thus permit less conservative replication levels. Moreover, a
scoped insertion approach fits more naturally firewalled in-
tranets and it arises naturally when ePOST is deployed in-
crementally. Scoped insertion can be supported with minor
extensions to POST and PAST, but we omit the details due to
lack of space.

It is interesting to note that ePOST provides better spam
prevention than current email systems. In ePOST, all noti-
fication messages are signed by the sender, which makes it
possible to build effective spam block lists. These block lists
could be compiled on a per-user basis, and possibly shared
among users. Additionally, ePOST could limit the rate of
sending messages by requiring senders to solve small crypto-
graphic puzzles [5] before being allowed to send notification
messages. This would not have much of an effect on normal
ePOST users but would slow down bulk emailers.

Mailing lists can be easily supported by maintaining the
list as an additional log and storing the log head reference at
the list maintainer’s user identity block. Only the maintainer
is allowed to modify the membership. When delivering a
message, the sender notices the list and expands the recipient
list appropriately.

4



5 Incremental Deployment

In this section, we discuss integration issues in the context of
ePOST. The approaches could be generalized to other POST
applications. To allow an organization to adopt ePOST as
its email infrastructure, ePOST must be able to interoper-
ate with the existing, server-based email infrastructure. We
sketch here how ePOST could be deployed in a single orga-
nization and interoperate with email services in the general
Internet.

To send email messages to the outside world, the ePOST
proxies use standard SMTP to contact the recipient’s email
server, whenever a recipient is outside the local organiza-
tion. For inbound email, the organization’s DNS server de-
livers MX records referring to a random proxy in the ePOST
system, which accepts the message using SMTP, and deliv-
ers it locally to the intended recipients. Of course, ePOST’s
built-in authentication and privacy mechanisms are not avail-
able when email is exchanged with a party that does not use
ePOST. Incoming messages are tagged with a MIME header
indicating that the message’s origin and integrity could not
be verified.

ePOST currently assumes that all participating hosts can
communicate with each other, without intervening firewalls.
ePOST systems separated by firewalls can interoperate via
SMTP, at the cost of losing the security aspects and shared
message storage. Allowing ePOST systems separated by fire-
walls to be integrated more tightly is the subject of ongoing
work.

6 Related Work

Current email protocols, including SMTP [11], POP3 [8],
and IMAP [4], are tailored towards an infrastructure based on
dedicated servers. Minimal security is provided in these pro-
tocols, and the email service does not provide confidentiality,
verifiability, or data integrity. Extensions like PGP [15] pro-
vide secure email, but are not widely used.

Lotus Notes and Microsoft Exchange provide a general,
secure messaging infrastructure based on the client-server
model, providing the ability to transfer email, personal con-
tacts, calendars, and tasks. POST aims to provide similar
functionality based on a serverless, decentralized and coop-
erative p2p architecture.

There has been much work to allow email services to scale
more effectively through the use of cluster-based servers,
such as the Porcupine System [14] as well as Hotmail and
Yahoo’s mail services. ePOST instead utilizes a completely
decentralized, self-scaling architecture, thus eliminating the
need for dedicated, powerful mail servers.

7 Status

We have implemented a prototype of POST and ePOST;
an implementation of an instant messaging service based
on POST, calledimPOST, is currently underway. We plan
to start using ePOST shortly, initially within our research
groups, and hope to expand the user base within Rice and

LIP6 and beyond, as we gain experience and confidence in
the system. Given users’ dependence on email services, we
view this as a proof of concept for mission-critical p2p sys-
tems, and as a vehicle to gain practical experience and work-
load trace data from such a system. A full description and
evaluation of POST and ePOST will be provided in an up-
coming full paper.

8 Conclusions

POST is a p2p, collaborative messaging system that leverages
the resources of participating desktop computers. POST pro-
vides highly resilient and scalable messaging services, while
ensuring confidentiality, data integrity, and authentication.
The fundamental services provided by POST can be used to
support a variety of messaging applications. In this paper, we
have sketched how POST can be used to construct ePOST, a
cooperative, secure email system.

References
[1] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a

serverless distributed file system deployed on an existing set of desktop
PCs. InProc. SIGMETRICS’2000, Santa Clara, CA, 2000.

[2] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach.
Security for structured peer-to-peer overlay networks. InProc. of
the Fifth Symposium on Operating System Design and Implementation
(OSDI 2002), Boston, MA, December 2002.

[3] M. Castro, P. Druschel, A-M. Kermarrec, and A. Rowstron. SCRIBE:
A large-scale and decentralized application-level multicast infrastruc-
ture. IEEE JSAC, 20(8), October 2002.

[4] M. Crispin. RFC 2060: Internet message access protocol version
4rev1, December 1996.

[5] D. Dean and A. Stubblefield. Using client puzzles to protect TLS. In
Proc. 10th USENIX Security Symposium, Washington, D.C., August
2001.

[6] J. Douceur, A. Adya, W. Bolosky, D. Simon, and M. Theimer. Re-
claiming space from duplicate files in a serverless distributed file sys-
tem. InProc. of the International Conference on Distributed Comput-
ing Systems (ICDCS 2002), Vienna, Austria, July 2002.

[7] Jussi Kangasharju, Keith W. Ross, David A. Turner, Juha Syrjala, and
David-Steve Digeon. Peer-to-peer e-mail, November 2002. Submitted
for publication.

[8] J. Meyers and M. Rose. RFC 1939: Post office protocol version 3,
May 1996.

[9] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A read/write
peer-to-peer file system. InProc. of the Fifth Symposium on Oper-
ating System Design and Implementation (OSDI 2002), Boston, MA,
December 2002.

[10] T. Ngan, P. Druschel, and D. S. Wallach. Enforcing fair sharing of peer-
to-peer resources. InProceedings for the 2nd International Workshop
on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, February 2003.

[11] J. Postel. RFC 821: Simple mail transfer protocol, August 1982.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems. InIFIP/ACM
Middleware 2001, Heidelberg, Germany, November 2001.

[13] A. Rowstron and P. Druschel. Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility. InProc.
ACM SOSP’01, Banff, Canada, October 2001.

[14] Y. Saito and B. Bershad H. Levy. Manageability, availability and per-
formance in Porcupine: A highly scalable, cluster-based mail service.
In Proc. ACM SOSP’99, Charleston, South Carolina, December 1999.

[15] P. Zimmerman. PGP user’s guide, December 1992.

5


